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ABSTRACT

SCHMID, K.A.; HADLEY, B.C., and WIJEKOON, N., 2011. Vertical accuracy and use of topographic LIDAR data in
coastal marshes. Journal of Coastal Research, 27(6A), 116–132. West Palm Beach (Florida), ISSN 0749-0208.

Coastal marsh habitat and its associated vegetation are strongly linked to substrate elevation and local drainage
patterns. As such, accurate representations of both the vegetation height and the surface elevations are requisite
components for systematic analysis and temporal monitoring of the habitat. Topographic Light Detection and Ranging
(LIDAR) data can provide high-resolution, high-accuracy elevation measurements of features both aboveground and at
the surface. However, because of poor penetration of the laser pulse through the marsh vegetation, bare-earth LIDAR
elevations can be markedly less accurate when compared with adjacent upland habitats. Consequently, LIDAR ground-
elevation errors (i.e., standard deviation [SD] and bias) can vary significantly from the standard upland land-cover
classes quoted in a typical data provider’s quality-assurance report. Custom digital elevation model (DEM) generation
techniques and point classification processes can be used to improve estimates of ground elevations in coastal marshes.
The simplest of these methods is minimum bin gridding, which extracts the lowest elevation value included within a
user-specified search window and assigns that value to the appropriate DEM grid cell. More complex point-to-point
classification can be accomplished by enforcing stricter slope limits and increasing the level of smoothing. Despite
lowering the spatial resolution of the DEM, the application of these techniques significantly improves the vertical
accuracy of the LIDAR-derived bare-earth surfaces. By employing the minimum bin technique to the bare-earth
classified LIDAR data, the overall bias in the resultant surface was reduced by 12 cm, and the vertical accuracy was
improved by 8 cm when compared with the ‘‘as-received’’ data.
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INTRODUCTION

Topographic Light Detection and Ranging (LIDAR) has

become a trusted technology for the collection of high-accuracy,

high-resolution elevation data, and the widespread availability

of vendor-supplied accuracy reports contributes to user

confidence (Franklin, 2008). The application of LIDAR data

to natural resource management practices, and more specifi-

cally, to those associated with the coastal marsh environment,

is expected to increase in the near future (Cary, 2009). For

example, the use of LIDAR-derived digital elevation models

(DEMs) to model marsh evolution and vegetation changes from

sea-level rise is becoming a more common practice as the

availability of LIDAR data increases and the software

continues to evolve (Franklin, 2008). Some of the more common

marsh applications of LIDAR data include single-surface (i.e.,

bathtub) sea-level rise inundation models, the Sea Level

Affecting Marshes Model (SLAMM), invasive species mapping,

and restoration planning tools (Glick, Clough, and Nunley,

2007; Robinson and Carter, 2006).

The underlying goal of this group of models is to provide

guidance on where wetland species will thrive or how they will

change in the future, based largely on elevation trends within

the landscape. However, when acquired in a coastal marsh

environment, research has demonstrated a decreased ability

for the laser pulse to penetrate through the vegetative layer to

the ground surface (Rosso, Ustin, and Hastings, 2003).

Therefore, elevation errors in marshes can be different from

the values reported for the adjacent uplands. These differences

can potentially result in misuse of the data and/or erroneous

conclusions; therefore, a real need exists for quantifying its

vertical accuracy. In addition, there is potential to increase the

vertical accuracy of the LIDAR data and make it more suitable

for marsh-related applications, such as sea-level rise and

inundation modeling (Schmid et al., 2009). This study aims to

(1) inform users of the limitations of LIDAR data collected in

coastal marsh environments, limitations that are often poorly

documented in metadata or vendor-supplied accuracy reports;

and (2) build on previous research by investigating methods to

improve known shortcomings.

Coastal marshes are among the most productive habitats in

the world, with low and intertidal portions contributing more
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biomass than the landward and seaward elevation extremes

(Cahoon, 1997; Morris et al., 2005). These marshes reside in a

specific topographic niche and are largely controlled by the

surrounding microtopography; centimeter-level elevation var-

iations can affect nutrient supply and cycling within the marsh

(Rosso, Ustin, and Hastings, 2003, 2006). Likewise, the

variation in habitat defines its ability to support specific floral

and faunal species that ultimately affect the ocean–coastal

zone productivity (e.g., fish stocks) (Titus, 1988). Estuarine

marshes are also a vital component of green infrastructure,

which reduces flood risks, mitigates storm-water effects,

improves water quality, and provides hurricane protection

(Costanza et al., 2008; Titus, 1988; Weber, 2003). Topography

affects the health and function of a marsh and its ability to

provide green infrastructure services (Montane and Torres,

2006). Thus, changes in elevation (e.g., low marsh to mudflat)

can ultimately affect upland habitats and human health and

safety (Titus et al., 2009).

Relative sea-level rise, like the microtopography, is a subtle

variable. Past sea-level rise rates are expected to increase;

however, the magnitude of change is likely to remain on a scale

of millimeters per year during the 21st century (Fletcher, 2009;

Rahmstorf, 2010). The subsequent response of coastal environ-

ments will depend on various geologic, topographic, and

morphologic factors. However, marshes may demonstrate

dramatic changes because of their sensitivity to subtle

elevation variations (Cahoon, 1997; Titus et al., 2009). Kana

et al. (1998) suggests that physical changes to coastal

marshland habitat and its associated vegetation (e.g., low-

and high-marsh communities) will be the first indicators of

accelerated rates of sea-level rise. Such changes include

vertical accretion, marsh habitat translation (e.g., low to high

marsh), increased erosion, and loss of vegetation.

Because the relationship between coastal marsh habitat and

its characteristic vegetation are largely controlled by substrate

elevation and local drainage patterns, accurate high-resolution

representations of both vegetation height and ground-surface

elevations are requisite components of systematic analysis

(Chust et al., 2008; Mason et al., 2005; Morris et al., 2005).

Topographic LIDAR data can provide high-resolution, high-

accuracy elevation measurements of features both above-

ground (e.g., vegetation and buildings) and at the surface

(i.e., bare earth) and are available in many coastal regions of

the United States (Hopkinson et al., 2004).

LIDAR Collection in Coastal Habitats

LIDAR data have been successfully used to investigate

subtle coastal topography and storm changes (Zhang et al.,

2005). Unfortunately, within the coastal marsh environment,

the ability of LIDAR systems to resolve centimeter-level

elevation differences between the vegetation and the bare-

earth surface is compromised (Bowen and Waltermire, 2002;

Hopkinson et al., 2004). This effect appears to be linked to the

physical structure of the marsh vegetation, or more specifically,

its erect form, homogeneity, density, and height. The dense and

homogeneous nature of erectophile marsh vegetation often

results in the collection of LIDAR mass points that closely

resemble a flat surface consistent with bare-earth (i.e., ground)

elevation and morphology (Gopfert and Heipke, 2006).

Additionally, the resolving threshold of lidar can be at or

near the elevation of the marsh returns; the distance between a

return from the vegetation and the ground can be less than the

‘‘length’’ of the lidar pulse. For each lidar pulse’s reflected

energy, there is a level of resolving power that controls the

precision of the measurement. The form of the reflected signal,

which is dependent on the type of reflecting surface, and the

detection algorithms (i.e., what level or shape of the return

triggers a ‘‘return’’), affects the ability of the instrument to

define unique returns (Wagner et al., 2004). For example, the

reflected energy of a pulse from the first target (i.e., vegetation)

can be comingled with the reflected energy of a second target

(i.e., ground), with each being unique, depending on the

reflecting medium and its angle. The resulting signal can be

a complex amalgam of multiple target returns. A variety of

detection algorithms are used to separate the individual

returns within a signal that is merged, but each algorithm

has the potential for loss of returns, noisy returns (i.e., false

returns), and erroneous distance calculations (Wagner et al.,

2004). As a consequence, individual, reflected impulses

separated by less than the pulse length, which can vary from

0.5 to 10 ns apart or approximately 0.1 to 1.5 m, can be difficult

to reconcile as ‘‘separate’’ (Hopkinson, 2006; Populus et al.,

2001) and may have increased errors.

These aspects are physical and technological limitations of

LIDAR systems as they are now being used, and as such, this

article does not aim to analyze the error associated with

waveform shapes or trigger algorithms, which are commonly

proprietary in commercial LIDAR systems (Wagner et al.,

2004). Instead, we investigate the error in the mass points (i.e.,

classified points) that are commonly delivered products in

state- and federal-sponsored LIDAR projects. For the purposes

of this article, vertical accuracy defines the error associated

with a sample population of elevation values (i.e., mass points).

The error consists of two primary components: (1) bias or offset,

and (2) level of precision (i.e., SD).

Most LIDAR data sets are quantitatively evaluated using

standardized methods to determine the vertical accuracy of the

ground population with respect to different types of land cover.

According to Federal Emergency Management Agency (FEMA)

specifications, LIDAR data should be tested against ground

control points (GCPs) collected in five basic, upland, land-cover

categories. These land-cover categories include (1) open

terrain, (2) urban or built-up infrastructure, (3) forest,

(4) scrub–shrub or low-lying woody vegetation, and (5) weeds,

tall grass, and crops (FEMA, 2003). Although the absolute

definition of each land-cover class is open to some interpreta-

tion, the requirement for collection of GCPs in these five

categories is well defined. In most cases, even in coastal-data

collections, only a limited number of GCPs are acquired, if any,

in marshland cover. Consequently, the vertical-accuracy

specifications are not typically cited in LIDAR quality

assurance (QA) reports (FEMA, 2003). For marsh-specific

studies, the logical outcome is to assume that the vertical

accuracy of the weeds, tall grass, and crops category reasonably

resembles coastal marsh habitats. Unfortunately, such an

assumption may be incorrect, especially if the LIDAR
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acquisition is timed for minimum vegetation effects (leaf-off

conditions).

Previous Applications of LIDAR Data in Marshes

Topographic LIDAR has been employed in marsh-related

research throughout the United States, Canada, and Europe.

In addition to various modeling and classification exercises,

researchers often investigated the vertical accuracy of the

LIDAR data, and to the degree possible, attempted to explain

errors in the height measurements as some function of the

marsh’s vegetation properties (e.g., height, density, macro-

phyte type) and/or processing of the raw LIDAR returns.

Several studies in Europe have used topographic LIDAR

data to map coastal habitats and, as a part of the investigation,

evaluated their vertical accuracy to determine the appropri-

ateness of the data for use in the intended application. Populus

et al. (2001) asked the fundamental question of where on the

vegetation the LIDAR pulse is reflected. They determined that

in dense stands of vegetation, the approximate height of the

LIDAR return correlated to one-half of the vegetation height.

Concomitantly, they found that the positive LIDAR bias (i.e.,

LIDAR return from above the ground surface) was directly

correlated to vegetation height and density. Gopfert and

Heipke (2006) also documented a positive bias that varied as

a function of vegetation parameters such as height, density,

and species type. The authors reported that height alone did

not accurately predict the magnitude of the bias. Although

their data were classified to yield bare-earth returns, they

concluded that the classification was typically incorrect when

actual points hitting the ground were few or absent, or when

the vegetation was low enough to make the surrounding bare-

earth surface difficult to detect. The LIDAR intensity data did,

however, provide useful additional information for making

elevation-error assessments.

More recently, Wang et al. (2009) used an expanding window

technique to improve the chances of capturing true ground

returns from a high posting density LIDAR data set (i.e.,

8 points per square meter) acquired over a heterogeneous

marsh system near Venice, Italy. The authors found that only

2–3% of LIDAR returns were actually recorded from the

ground surface. A 3.5 3 3.5-m window was chosen as the

‘‘optimal’’ window for this specific data set.

Canadian efforts have focused on determining the vegetation

heights of various marsh habitats. With respect to aquatic

vegetation in the Alberta province, Hopkinson et al. (2004)

found that the combination of erectophile vegetation and

saturated soil resulted in significant errors in both canopy

and ground elevations. The authors concluded that weak

returns from saturated soils biased the backscatter (i.e.,

reflective energy) waveform upward toward the energy

reflected from the foliage, whereas the erect vegetation allowed

a greater degree of penetration. The result was a poor

vegetation-height estimate in aquatic vegetation and a subse-

quent positive ground-elevation bias of 15 cm. By interpolating

the points to a raster, Hopkinson et al. (2004) were able to

reduce the vertical error of the LIDAR-derived ground surface.

They recommend that LIDAR point classification should be

selectively performed based on vegetation classification.

Various investigations in the United States have evaluated

the vertical accuracy of LIDAR data within estuarine marsh

environments located on both the western and eastern sides

of the continent. Rosso, Ustin, and Hastings (2003, 2006)

evaluated the use of LIDAR to map sedimentation rates as a

function of cordgrass (Spartina sp.) colonization in the San

Francisco Bay. The authors documented a positive bias in

the LIDAR-derived ground elevations and inferred that the

resultant offset correlated with the middle portion of the

vegetation canopy. Rosso, Ustin, and Hastings (2003, 2006)

concluded that generic filtering techniques could not differen-

tiate the vegetation and ground returns and suggested the use

of such ‘‘common’’ techniques cannot achieve a level of accuracy

sufficient to support detailed geomorphology research in

estuarine marsh habitats. Research by Sadro, Gastil-Buhl,

and Melack (2007) in a California marsh reported a similar

result to Wang et al. (2009), whereby only a small fraction of the

LIDAR points (3%) actually penetrated through the vegetation

canopy and hit the ground surface.

A significant amount of LIDAR-related marsh research has

been conducted in South Carolina, most notably at the North

Inlet–Winyah Bay National Estuarine Research Reserve

(NERR). Montane and Torres (2006) reported a positive bias

in LIDAR-derived ground elevations of approximately 7 cm. A

similar investigation by Morris et al. (2005) documented a

positive bias of 13 cm, but it should be noted that they employed

fewer GCPs in their analysis. Morris et al. (2005) concluded

that the bias resulted from a combination of (1) poor LIDAR

penetration, and (2) errors in the classification and filtering

operations.

In summary, the previous research highlights the failure of

the laser pulses to penetrate through most marsh vegetation

effectively, which prevents the system (the instrument and

software) from discerning true ground returns from those

returns reflected off the top or inside of the vegetation canopy.

This, in turn, results in vertical errors in LIDAR-derived

ground elevations that typically manifest as positive biases.

These findings generally highlight the problems associated

with as-received LIDAR data; LIDAR data acquired over an

estuarine marsh have greater limitations than data collected

over upland areas (Gopfert and Heipke, 2006; Montane and

Torres, 2006).

METHODOLOGY

Ground control was collected in situ at five separate

estuarine marsh locations to assess the vertical accuracy of a

bare-earth–classified LIDAR data set, with respect to variable

environmental and habitat conditions. Each site was located in

Charleston County, South Carolina, and contained a mixture

of macrophytic vegetation types and growth parameters

(Figure 1). Two of the sites (Folly Beach and Sullivan’s Island)

were located in back-barrier marshes, whereas the others had

greater riverine influences. The Charleston Navy Base site is a

fringing marsh, the Belle Hall location is primarily high or

transitional marsh, and the Palmetto Islands County Park site

is mixed tidal riverine marsh.

The ground reference data were acquired during a 2-week

period between December 2008 and January 2009. By contrast,
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the LIDAR data were collected in January 2007. The 2-year

separation of measurements is not the ideal case, but the

seasonal component was determined to be the most significant

aspect controlling vegetation changes in the sampled marshes

(Montane and Torres, 2006). Ground reference points were

collected at lower tides (i.e., below mean tide level) and were

consistent with the tidal constraints on the LIDAR data

capture. LIDAR data for all sites were captured below mean

tide level; in all cases, the water surface was significantly below

the marsh surface. Four of the five sites displayed no signs of

rapid change in vegetation vigor or structure. A small portion of

the Sullivan’s Island site exhibited some discontinuous and/or

fragmented vegetation cover and could potentially have had

some intra-annual variance in species or vegetative extents. No

obviously degraded marshes were sampled.

Short-term, daily to monthly, marsh elevation differences

(i.e., shrinking and swelling), driven by tides, rainfall, and

evapotranspiration, are possible because of the asynchronous

collection. The magnitude of these processes is on the order of

millimeters (Paquette et al., 2004), but the ground control and

LIDAR data were collected in accordance with Global Position-

ing System (GPS) techniques that have centimeter-level

precision (Zilkoski, D’Onofrio, and Frakes, 2008). Therefore,

although these elevational changes are important in yearly

marsh accretion (millimeters per year) studies, they are beyond

the resolution of the techniques used and would be considered

‘‘noise’’ in this study.

Elevation Survey Techniques

The horizontal and vertical positions of the ground reference

data were determined using the following methods. Two

temporary benchmarks (TBMs) were established in the direct

vicinity of the marshes. The TBMs were then surveyed using

static GPS techniques to achieve 2- to 5-cm accuracies

(Zilkoski, D’Onofrio, and Frakes, 2008). Several sites had

existing National Geodetic Survey (NGS) survey markers

within close proximity to the targeted sampling areas. In those

cases, the NGS benchmarks were used to either validate the

accuracy of the static GPS measurements or as survey controls

(i.e., TBMs). The NGS’s Online Positioning User Service

(OPUS) (NGS, 2009) and the Global Navigation Satellites

System (GNSS) Solutions software (Version 2.00.3, Thales

Navigation, Santa Clara, California) were used to process the

GPS data; the solutions were compared to establish confidence

in the final coordinates. A total station (GTS-230W, Topcon

Positioning Systems, Livermore, California) was set up on one

of the TBMs, and the other TBM was used as a backsight. A

side-shot direct technique was used to generate positions and

elevations at each GCP. The survey rod was fitted with a 9-

inch-wide (23 cm), flat base to prevent it from sinking below the

marsh surface. The GCPs were primarily collected along

transects crossing the marsh surfaces; transects were aligned

roughly perpendicular to the upland–marsh boundary. Sam-

ples were acquired in areas that approximated the overall

nature of the marsh, such that the number of points taken in

the various habitats was meant to provide a representative

subset of the overall population. Additionally, several points

were collected at each site on open, bare-earth terrain to

document any local biases in the LIDAR data unrelated to the

potentially deleterious vegetation effects. In total, 280 GCPs

(223 marsh points; 47 upland points) were collected in and

around the five marshes.

Vegetation Parameters

The macrophytic vegetation species (or mixture of species) at

each point was defined along with the top of the vegetation

canopy height. The dominant species included (1) smooth

cordgrass (Spartina alterniflora), (2) black needlerush (Juncus

roemerianus), (3) sea ox-eye (Borrichia frutescens), and

(4) perennial glasswort (Salicornia virginica). Visual estimates

of the vegetation density near the surveyed point were also

defined. Density was measured as the percentage of ground

covered by vegetation, both alive and senescent; 100% density

would preclude any view of the ground, and a 25% density

would be largely bare ground. This variable was the most

subjective of the ground reference data. However, because the

same field team collected the data at each of the five sites, the

measurement techniques remained consistent.

LIDAR Data

The primary LIDAR data used in this analysis was acquired

by Photo Science (Lexington, Kentucky) during leaf-off condi-

tions in January 2007 and February 2007. The data were

collected with an ALS50 sensor (Leica Geosystems, Heerbrugg,

Switzerland) at a flying height of 1400 m and a total field of

view of 33u, which are typical of many county-wide collections,

using a pulse rate of 41 kHz (41,000 pulses/s), a scan rate of

75.4 Hz, and sidelap of 28%, which yielded a nominal point

spacing of 1.4 m with a targeted vertical root mean square error

(RMSEZ) specification of 15 cm. The data provider used

TerraScan software (Terrasolid, Leppävaara, Finland) to

classify the raw LIDAR data into ground, unclassified, and

water points. Although largely proprietary, the general ground

classification routine uses local low points within a specified

Figure 1. Study area and site locations in the greater Charleston, South

Carolina area.
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grid size (e.g., 60 3 60 m) and then iteratively adds points based

on angles and distance from the ‘‘ground’’ points. The starting

grid size, angles, and distances are set by the user (Soininen,

2010). Thus, unclassified points represent both structures and

vegetation; water points are those reflected from the water

surface. The data were independently ground-verified in five

different land-cover classes and achieved an overall RMSEZ of

9.3 cm (95% vertical accuracy of 18.2 cm) (NOAA CSC, 2008).

RESULTS

Baseline DEMs were generated using only the bare-earth

classified points from the as-received, vendor-supplied LIDAR

data. The LIDAR points were interpolated to 2-m grid cells

using both Triangulated Irregular Network (TIN) and Inverse

Distance Weighted (IDW) techniques. Visual and statistical

inspection of the resultant surfaces from the two interpolation

techniques yielded negligible differences at the 2-m spatial

resolution. The vertical accuracy of the bare-earth surfaces was

derived from the marsh-surveyed GCPs. The relationship

between the resultant errors was then modeled against the

other ground reference variables (e.g., percentage of vegetated

ground coverage).

LIDAR Vertical Accuracy: Comparison of Marsh Points
to Reported Uplands Categories

The appropriate uses of LIDAR are unique to each data set

and are largely dependent on their vertical accuracy in the

representative land cover for a given geography. Flood (2004)

provides details on reporting the vertical accuracy of LIDAR

data. In most cases, the data are tested in the five previously

listed land-cover categories: (1) open terrain, (2) urban or built-

up infrastructure, (3) forest, (4) scrub–shrub or low-lying

woody vegetation, and (5) weeds, tall grass, and crops (FEMA,

2003). The vertical accuracy of the open-terrain category,

known as Fundamental Vertical Accuracy, is typically used to

describe the overall quality of the collection and postprocessing

of the data; the other classes help to define the effectiveness of

the vegetation and/or structure-removal algorithms to classify

the bare-earth surface and are labeled collectively as the

Supplemental Vertical Accuracy. Lacking GCPs, the general

assumption is that the vertical accuracy in marshes is

approximated by the weeds–crops or scrub–shrub categories.

Table 1 reports the vertical accuracy of the Charleston

County, South Carolina, LIDAR data set with respect to the

five standard land-cover categories. A line graph displays the

errors for each land-cover category, with the weeds–crops and

scrub–shrub classes depicting a small, positive bias (Figure 2).

Based on these statistics, one might estimate the vertical

accuracy in marshes to be 20 cm (95% confidence; RMSEZ of

10 cm) with a 5-cm positive bias. When tested separately,

however, statistical analysis revealed that the marsh is a

unique land-cover category that can have significantly greater

errors (SD and bias) than the upland classes (Figure 2).

Table 2 reports the vertical accuracy statistics for both the

marsh and the consolidated upland land-cover categories; the

RMSEZ of the marsh is more than twice the value of the

uplands. More importantly, the mean error is more than 15 cm

above the bare-earth surface (a significant, positive bias). It

should be noted that the independent, open-terrain check-

points collected around the periphery of the marshes displayed

nearly the same RMSEZ (9.0 cm vs. 9.3 cm) as the consolidated

upland categories.

Considering the vertical accuracy statistics, it is clear that

the LIDAR-derived marsh surface includes greater errors with

higher positive biases than do the uplands. An unpaired t test

was used to assess the mean elevation errors from the upland

and marsh groups. The resultant two-tailed p value was less

than 0.0001, so by conventional criteria, the difference between

the two groups is extremely significant. A similar result

(p value of 0.0032) was obtained when the errors from the

scrub–shrub and weeds–crops are aggregated to a single group

and tested against the marsh errors. Therefore, it is highly

likely that the LIDAR-derived, ground-surface elevation errors

from the marsh and upland habitats are unique and that

substituting upland errors as a proxy for LIDAR performance

in marshes is not appropriate.

LIDAR Vertical Accuracy: Site-Specific Analysis

Like most naturally varying environments, each specific

marsh habitat exhibits a unique set of biophysical conditions

(e.g., salinity, tides, substrates) (Cahoon and Reed, 1995). In

light of these differences, the marsh points were divided into

site-specific groups to test whether the measured accuracy of

one or two marsh locations provided a reasonable estimate of

the overall marsh accuracy for the LIDAR-derived ground

surface. The RMSEZ at the various sites ranged from 4.2 to

42.3 cm, a difference of one order of magnitude (Table 3).

Sorting the errors by study site highlights some of the

similarities and variations between the different marsh

habitats (Figure 3). The ‘‘flat’’ portions of the sorted error

distributions are consistent with the points sampled in

homogeneous stands of Spartina alterniflora. By contrast, the

‘‘tails’’ at the ends of the distributions are associated with

Juncus roemerianus and/or other mixed vegetation samples;

Table 1. Vertical accuracy statistics for the as-received 2007 Charleston County, South Carolina, LIDAR data set.

Land Cover No. of Points RMSEZ (cm) Mean (cm) Minimum (cm) Maximum (cm) Skew

Standard

Deviation (cm)

Vertical

Accuracy (cm)

All 75 9.3 22.0 225.6 19.1 20.24 9.2 18.2

Open terrain 26 9.2 22.8 219.3 17.2 20.06 9.0 18.1

Forest 18 10.7 26.1 225.6 6.8 20.59 9.1 21.0

Weeds–Crops 11 7.6 1.1 210.8 12.8 20.21 7.8 14.8

Scrub–Shrub 9 10.3 6.3 28.3 19.1 20.31 8.6 20.2

Built-Up 11 7.9 2.8 217.5 5.7 20.87 7.8 15.5
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these trends were common in each marsh. One notable

exception was the mean error (i.e., bias) discrepancy between

Folly Beach and the other marsh sites. As a point of

comparison, the upland, open-terrain points around Folly

Beach also demonstrated an overall negative bias, which was

verified by an independent review of the supplemental GCPs.

This highlights the site- and flight line–specific aspects of

LIDAR data.

The error statistics varied greatly between sample groups

and appear to be dependent on species type(s) and its relative

abundance. This assumption was confirmed using a one-way

analysis of variance (ANOVA); the probability that the

resultant errors came from the same distribution is less than

0.0001 (i.e., extremely unlikely). The ANOVA proved that at

least one site is different from the other groups; however, the

univariate statistics suggest two or more sites could be similar.

Examination of box plots reveals that the Palmetto Islands

County Park, South Carolina, site contained a significant

amount of the overall variability within the total population

and had a mean error close to the overall marsh value (15.3 cm

vs. 18.3 cm) (Figure 4). Post hoc t tests were used to compare

the Palmetto Islands, South Carolina, vertical errors with the

other four locations. As depicted in the box plots, the Palmetto

Islands, South Carolina, site was equivalent to both the Navy

Base and Sullivan’s Island, South Carolina sites, with p values

of 0.68 and 0.16, respectively. The Belle Hall and Folly Beach,

South Carolina, sites were not similar to each other or to any of

the other sites.

LIDAR Vertical Accuracy: Species-Specific Variations

Because the ability to assess the vertical accuracy of LIDAR-

derived ground surfaces in marsh habitats requires some

understanding of site character, it is important to look at what

is different at each site. The simplest answer is the vegetation.

As mentioned above, the principal macrophytic species includ-

ed (1) Spartina alterniflora, (2) Juncus roemerianus,

(3) Borrichia frutescens, and (4) Salicornia virginica. Each

species possesses a relatively unique set of height and density

properties. Table 4 reports the vertical accuracy statistics for

the ground reference samples as grouped by species type.

The RMSEZ values in the Spartina alterniflora, Juncus

Figure 2. Upland land cover GCP errors with a random selection of marsh GCP errors from the Navy Base, South Carolina site. Points are sorted and

plotted by error value from lowest to highest.

Table 2. Vertical accuracy statistics for the consolidated upland and marsh-land cover samples.

Land Cover No. of Points RMSEZ (cm) Mean (cm) Minimum (cm) Maximum (cm) Skew

Standard

Deviation (cm)

Vertical

Accuracy (cm)

Upland 75 9.3 22.0 225.6 19.1 20.24 9.2 18.2

Marsh 223 23.2 15.3 213.0 70.4 1.29 17.6 45.7
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roemerianus, and Borrichia frutescens groups are similar to the

mean value highlighting the bias of LIDAR data collected in

marshes. The Salicornia virginica group has a vertical

accuracy similar to open terrain (Table 4; Figure 5), which

reflects the low density and low height (typically less than

15 cm) of the vegetation. There were a few locations in the

Salicornia virginica areas with a mixture of Spartina alterni-

flora, which are represented as the filled dots in Figure 5. In

fact, if Juncus roemerianus is excluded the remaining GCPs

sampled in the marsh, the vegetation would have passed

FEMA’s base LIDAR vertical-accuracy specification (i.e.,

RMSEZ # 18.5 cm). This portends the problem of looking only

at RMSE because the bias is, or may be, more important for

marsh–coastal applications (Populus et al., 2001).

Interpretation of the standard deviations of the various

species also implies that Juncus roemerianus is different from

the other vegetation, principally Spartina alterniflora. This

may be a function of its different phenological cycles; whereas

the elongated, smooth leaves of Spartina alterniflora senesce

during the winter, evergreen Juncus roemerianus maintains a

relatively dense leaf canopy year-round. By contrast, Borrichia

frutescens is a low-growing, deciduous shrub; however, the

RMSEZ and standard deviation for Borrichia frutescens are not

significantly different from those of Spartina alterniflora. The

relative similarities in their elevation-error statistics may be

caused by differences in leaf canopy density and/or height.

Although Borrichia frutescens is shorter (,0.75 m), it is

composed of denser, broad leaves that likely result in LIDAR

returns off the top of the canopy. Spartina alterniflora is

typically taller (0.25 to 2.5 m), but the densest portion of the leaf

canopy (i.e., where reflection from the LIDAR pulse would be

greatest) is significantly closer to the marsh surface. Finally,

Table 3. Vertical accuracy statistics by sample site in South Carolina.

Land Cover No. of Points RMSEZ (cm) Mean (cm) Minimum (cm) Maximum (cm) Vertical Accuracy (cm)

Upland 75 9.3 22.0 225.6 19.1 18.2

Navy Base 68 21.6 19.4 7.4 65.9 42.3

Folly Beach 56 4.2 21.7 28.8 7.7 8.2

Palmetto Island 47 25.7 17.9 213.0 67.5 50.2

Sullivan’s Island 27 14.8 13.2 3.5 28.0 29.0

Belle Hall 25 45.3 38.8 2.2 70.4 88.8

Figure 3. Sorted marsh GCP errors at the five marsh sites and the previously collected upland GCPs. Points are sorted and plotted by error value from

lowest to highest.
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the Salicornia virginica–Spartina alterniflora mixture class is

a low-growing, perennial herb with erect branches and minute,

scaled leaves (Tiner, 1993).

An ANOVA test on the individual species groups returned a

p value of 0.0001, which highlights the elevation errors from at

least one group as being different from the others. As such, post

hoc t tests were used to evaluate differences between four

species pairs; the four pairs included (1) Juncus roemerianus to

Borrichia frutescens, (2) Juncus roemerianus to Salicornia

virginica–Spartina alterniflora/other, (3) Juncus roemerianus

to Spartina alterniflora, and (4) Spartina alterniflora to

Salicornia virginica–Spartina alterniflora/other. The differences

between the pairs were statistically significant for three out of

the four tests. Juncus roemerianus was different from all the

other groups with p values less than 0.0001. Spartina alterni-

flora was different from the Salicornia virginica–Spartina

alterniflora mixture group (p value of 0.008). Alternatively,

error variations between Spartina alterniflora and Borrichia

frutescens were not statistically significant (p value of 0.9987),

which again may be related to the interplay of the leaf canopy

properties (e.g., height and density) discussed in the previous

paragraph. Box plots of the error statistics by species type are

shown in Figure 5.

LIDAR Vertical Accuracy: Vegetation Height and
Ground Coverage Variations

With respect to Spartina alterniflora and Juncus roemer-

ianus vegetation species, the elevation-error distributions are

significantly different. As noted previously, some of the

variance appears to be spatially dependent. For example,

variations in the in situ, measured Spartina alterniflora

canopy heights are largely represented by the different sites

(Figure 6). The Spartina alterniflora heights at Folly Beach,

South Carolina, were significantly lower when compared with

the other dominant Spartina alterniflora marshes (e.g., Navy

Base and Sullivan’s Island). The height inconsistencies may be

associated with the sandier barrier island substrate because

the average ground elevations (i.e., flooding regime) were

comparable to the other sites. Assuming a hypothetical zero

error for a zero vegetation height, the Spartina alterniflora

‘‘correction factor’’ for the study sites, excluding Folly Beach,

South Carolina, would be approximately 20.15 3 canopy

height (Populus et al., 2001). The Folly Beach, South Carolina,

data are unique and highlight the specific spatial and

environmental variability of estuarine marsh vegetation; at

Folly Beach, South Carolina, no height correction was needed.

The correction factor for Spartina alterniflora was, for all study

sites, less than the 0.5 3 canopy height value reported by

Populus et al. (2001).

Juncus roemerianus displayed a more uniform distribution

of height in the sampled marshes (0.5 to 1.5 m). In this case, the

least-squares model explained slightly less variation in the

relationship between canopy height and error than did the

Spartina alterniflora model (R2 5 0.49 vs. R2 5 0.57). However,

the correlation decreased significantly at vegetation heights

above 1 m, a result that may again be explained by variations in

leaf canopy density. Although the sample size was more limited

(i.e., n 5 23), Borrichia frutescens would also appear to benefit

from a modeled height-correction factor, whereas 47% of the

variance in the elevation error was explained by differences in

canopy height.

Density (ground coverage) is another important biophysical

variable that contributes to the total elevation error in marsh

ground elevations derived from LIDAR data (Gopfert and

Heipke, 2006). Unfortunately, modeling the error based on

ground coverage alone has limited applicability because of the

aforementioned height differences in the various vegetation

species. However, if canopy height is multiplied by the density,

the resultant independent variable describes 59% of the

Figure 4. Box plot of the vertical errors from GCPs by marsh site. The box

represents the Q1 to Q3 quartiles, the middle line represents the median,

and the whiskers extend to the farthest nonoutlier points. Open circles

represent outliers, and filled circles represent extreme outliers.

Table 4. Vertical accuracy statistics by macrophytic species type.

Species No. of Points RMSEZ (cm) Standard Deviation (cm) Mean (cm)

Spartina alterniflora 121 15.6 11.4 10.7

Juncus roemerianus 63 36.6 21.6 29.7

Borrichia frutescens 23 14.8 10.4 10.7

Salicornia virginica/mixed 16 11.5 11.9 0.2
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variation in the elevation error (Figure 7). The product of

canopy height and density may provide a surrogate measure

for vegetation volume. Intuitively, as the vegetation volume

increases, the ability of the laser pulse to penetrate through the

canopy to the ground decreases, thus resulting in greater

elevation errors.

With respect to the sampled vegetation variables, partition-

ing the data by species had a limited effect on the overall

correction factors. Consequently, a single correction factor

appears to be applicable for different ‘‘canopy height 3 density’’

values in the two primary marsh species. A linear correction

factor of 20.32 3 (canopy height 3 density) fits the taller

Spartina alterniflora samples well; however, correlation with

the elevation error deteriorated at lower ‘‘canopy height 3

density’’ values. The opposite applied to Juncus roemerianus,

where correlation decreased as vegetation volume increased.

DISCUSSION

The results of this analysis, as well as other investigations by

Sadro, Gastil-Buhl, and Melack (2007); Rosso, Ustin, and

Hastings (2006); and Populus et al. (2001) demonstrate the

danger of assuming LIDAR-derived, coastal-marsh ground

measurements achieve the same level of vertical accuracy as

the upland land-cover categories tested in QA reports.

Compounding this problem, the scales of many important

biophysical processes, such as tide-controlled vegetation

differences, are finer in marshes than in upland and terrestrial

habitats (Montane and Torres, 2006; Morris et al., 2005). Thus,

the problem of modeling the effects of sea-level rise in marshes,

for example, becomes even more problematic.

LIDAR Limitations

The data presented highlight the relationship between

vegetation parameters and LIDAR-derived, ground-elevation

errors. To a large degree, the elevation errors can be explained

by variations in vegetation type (species), density, and canopy

height; however, site-specific variability is also a factor. As a

result, the ability to vary processing based on vegetation or

habitat parameters could improve data accuracy. Full wave-

form interpolation is not currently employed in the state-of-the-

practice, commercial, terrestrial, LIDAR acquisition and

processing; full waveform digitization would provide some

ability to discern different vegetation and apply specific

detection methods (Wagner et al., 2004). The software and

technical capacity required to process full waveform LIDAR

data is coming but, at present date, is not a viable practice

(Franklin, 2008).

At present, specifications on LIDAR collections, such as

flight height, pulse rate, sensor type, and field of view, can be

adjusted to increase point density and the likelihood of

vegetation penetration (Hopkinson, 2006). These modifications

can also increase collection costs, especially if the data are

being collected on a county-wide scale, and in many cases, the

data being used have already been collected. Varying classifi-

cation routines, which are typically proprietary, is another

avenue, but in regional/county collections, the use of varying

routines can create unwanted inconsistencies in DEM charac-

ter (e.g., changes in the native resolution) across the project

area.

The essence of the problem is illustrated in Figure 8. The

LIDAR returns in this Spartina alterniflora–dominated marsh

are consistently recorded above the ground surface. Although

they are below the middle of the vegetation canopy, they do not

represent the bare-earth elevations. It is interesting to note

that, in the marshes studied, very few points were left

unclassified (not ground), and nearly all were single returns

(i.e., 1 of 1), even though the marsh vegetation was consistently

greater than 1 m in height. The fact that nearly all points were

classified as ground (albeit incorrectly) effectively removes the

dependence on classification routine as a factor in the present

analysis and increases the potential for further automated

processing as a solution. However, the lack of true returns from

the ground surface, as well as their relative uniformity

represents significant obstacles for most LIDAR-classification

algorithms (Gopfert and Heipke, 2006). The paucity of ‘‘real’’

ground returns is likely a product of the LIDAR instrument’s

resolution and the ability of the software to recognize discrete

returns in the reflected waveform (Wagner et al., 2004, 2007).

Figure 5. Box plot of species-specific vertical errors for all marsh sites.

The box represents the Q1 to Q3 quartiles, the middle line represents the

median, and the whiskers extend to the farthest nonoutlier points. Open

circles represent outliers, and filled circles represent extreme outliers.
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The diffuse returns from erectophile marsh vegetation, coupled

with saturated soils, can create an ambiguous signal that

results in a false ground return (i.e., a return from above the

ground surface) (Figure 9). As mentioned, advanced, full-

waveform, LIDAR systems, such as the Experimental Ad-

vanced Airborne Research LIDAR or commercially available

systems from Riegl Laser Measurement Systems, GmbH

(Horn, Austria) and Optech Inc. (Vaughan, Canada), provide

an alternate avenue for defining the location of points. Various

algorithms designed to exploit the full-waveform signal could

be used in marsh or coastal areas to better establish return

elevations (Fowler et al., 2007). In addition, smaller-footprint

systems may have the ability to better exploit open spaces in

the marsh vegetation.

In the near term, LIDAR data will continue to have

vegetation-generated errors in coastal marshes. Errors can be

minimized by collecting data during seasonal windows when

plant canopies are at their lowest levels. That being said, the

LIDAR data employed in this investigation were acquired

during lower tides and leaf-off conditions yet still exhibited

significant vertical errors. To address the vertical errors

associated with LIDAR points in marshes, several techniques

were evaluated to produce more accurate bare-earth DEMs.

These techniques are intended to improve shortcomings in the

as-received data, as opposed to solving the problem at an

operational level.

Techniques for Correcting LIDAR-Generated Products
in Marshes

Various techniques are available for end users to generate or

interpolate DEMs from as-received LIDAR data. Although this

analysis focuses specifically on the bare-earth surface, similar

methods could be employed to develop a first return or

vegetation canopy-height digital surface model. The entire

collection of LIDAR points can be used, or the data can be

modified, selected, or segregated to improve the resultant

surface. It would be incorrect to assume that the as-received

LIDAR data set is the optimal one for all applications

(Franklin, 2008; Maune et al., 2007).

From an end user’s perspective, raster-based DEMs are

typically the elevation product of choice. Spatially explicit

models and contours commonly use or are derived from bare-

earth DEMs. However, not all DEMs are generated the same

way nor are their creations beholden to any one specific

standard (Maune et al., 2007). Development of DEMs is often

an iterative process that requires knowledge of the data (e.g.,

bias) and its intended use. Simple spatial-interpolation

techniques, such as IDW and natural neighbors, have

traditionally been the preferred method; however. more-

advanced techniques (e.g., kriging, splines, decimation, and

breaklines) are appropriate in situations in which the data do

not meet the need (e.g., not bare-earth filtered), require

Figure 6. Scatter plot of Spartina alterniflora canopy heights against elevation errors for each GCP; one outlier removed.
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additional information (e.g., hydro-correction), or have specific

collection properties (e.g., low point density) that are not well

suited for use with the more traditional methods (Maune et al.,

2007).

LIDAR point data can also be processed before DEM

generation in a step known as filtering, classification, or

postprocessing (Fowler et al., 2007). As with raster-based DEM

creation, users are afforded a large suite of software tools to

manipulate the base LIDAR data. In short, the as-received data

provided are, or can be, open for greater refinement; it should

not be assumed that the maximum quality has been achieved

from a delivered data set, especially in difficult geographies

such as marshes.

The results reported in the ‘‘Results’’ section represent the

baseline data (i.e., no user modifications were made to the as-

received data set) and will be used to quantitatively assess the

differences between the ‘‘user-modified’’ and ‘‘as-delivered’’

DEMs. The collected marsh GCPs are used to calculate

statistics of the user-modified DEMs in the same manner as

the as-delivered DEMs. Two techniques to create the user-

modified DEMs were explored: (1) custom gridding, and

(2) custom filtering.

Custom Gridding

As discussed, there are many ways to generate a DEM from

point data, with choice of interpolation and gridding routines

and varying the resolution being the most common differences

(Maune et al., 2007). Using these techniques, we attempted to

derive a DEM that more accurately represented the bare-earth

surface in the marsh. With the exception of tidal creeks,

topographic variations in marshes are generally limited over

small spatial extents. This affords users the option to decrease

Figure 8. Scaled schematic of the LIDAR profile generated through

Spartina alterniflora–dominated marsh at one GCP vertical-profile

location. The control location consists of three points: a surveyed ground

point, a measured middle vegetation point, and a measured top-of-

vegetation point. This is common of most profiles examined, with the

LIDAR ‘‘ground points’’ elevated slightly above the independently

measured ground.

Figure 7. Scatter plot of density multiplied by canopy height against elevation error for all vegetation types.
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(i.e., coarsen) the spatial resolution of the DEM while only

sacrificing a limited amount of the elevation detail. For

example, in flat areas, a 4- to 6-m DEM can, in most cases,

provide the same level of information as a 1- to 2-m DEM

(Maune et al., 2007). Another consideration is the spatial extent

of the DEM beyond the marsh boundary and the relative

importance of upland feature definition. Where discontinuous

marsh is present or upland areas dominate, the use of point

classification may provide a better option to custom gridding.

Earlier investigations documented only minor improve-

ments using different deterministic (e.g., IDW) and geostatis-

tical (e.g., kriging) interpolation models with high postspacing

LIDAR data (i.e., .0.5 points/m) (Rosso, Ustin, and Hastings,

2003, 2006). As a result, this study used a simple ‘‘bin-type’’

gridding technique. Binning methods are fundamentally

different from interpolation in that points are removed from

the data set. This approach is consistent with the overall goal of

filtering, considering that the as-received LIDAR data included

many nonground points incorrectly classified as ground. The

fundamental question then becomes whether the resolution is

more important than accuracy. If accuracy is the objective, the

expense of removing small-scale topographic features can be

justified by the removal of erroneous points (i.e., those above

the bare earth) to better model the overall ground surface.

Minimum bin-gridding from LIDAR data has been shown to

reduce vertical errors in vegetated cover, but in open areas

(e.g., mud flats), it can produce elevations below the true

ground surface (i.e., negative bias) (Rosso, Ustin, and Hastings,

2003). The method selects the lowest elevation point in a

predefined lattice (a structured grid at the user-specified

spatial resolution) to represent the elevation in each grid cell

of the output raster. In a case in which the resolution of the

lattice is approximately equal to the nominal postspacing of the

LIDAR data, the output value would be defined by a single

point; as the lattice resolution coarsens, the range of the input

elevations will likely increase. As such, spatial resolution is the

primary parameter to control the output surface, and changing

the resolution will produce DEMs with different elevation

characteristics (Figure 10). To quantify the differences, the

marsh GCPs were tested against minimum bin DEMs

generated at spatial resolutions ranging from 2 to 10 m. The

resultant error statistics were compared with the as-received

(i.e., IDW interpolated) data to ascertain the characteristics of

the custom DEMs, as well as to determine the spatial resolution

that provided the most improvement.

Error statistics for the minimum bin and IDW-interpolated

grids at varying spatial resolutions for the Charleston Navy

Base, South Carolina, site are shown in Figure 11. With the

exception of the 10-m grid, the minimum bin method resulted

in lower RMSEZ and bias values at each tested spatial

resolution. Additionally, all of the resampled grids (i.e., both

the minimum bin and the IDWs . 2 m) exhibited lower RMSEZ

values than the standard 2-m IDW-interpolated grid. The best

results in the Spartina alterniflora–dominated Navy Base site

were achieved using a 4-m minimum bin grid (RMSEZ 5 0.17 m,

SD 5 0.13 m, bias 5 0.12 m). By contrast, the Belle Hall, South

Carolina, site, composed almost exclusively of Juncus roemer-

ianus, required a larger minimum search radius to achieve a

comparable improvement in the RMSEZ; optimal results were

realized with a 10-m minimum bin (RMSEZ 5 0.12 m, SD 5

0.1 m, bias 5 0.07 m) (Figure 12). Because the Belle Hall, South

Carolina, site is predominantly high or transitional marsh with

few tidal creeks or other abrupt changes in elevation, a coarser

spatial-resolution DEM appears acceptable. With respect to

selecting the optimal spatial resolution, the ideal solution

would define the bin size as a function of the specific vegetation

parameters (e.g., species, ground coverage, and canopy heights)

in the marsh of interest. However, in most cases, information

about the vegetation is not collected.

To evaluate the overall suitability of the minimum bin

method for both marsh and upland land-cover categories, a 5-m

minimum bin surface was generated over the complete extent

Figure 9. Hypothetical waveform (intensity trace) from marsh and upland laser pulses and actual LIDAR profile across the upland–marsh boundary. The

diffuse character of marsh waveforms, as compared with upland areas, can bias data such that marsh points are higher than the upland land points

(under trees).

Vertical Accuracy and LIDAR Data in Coastal Marshes 127

Journal of Coastal Research, Vol. 27, No. 6A, (Supplement), 2011



of the Charleston County, South Carolina, LIDAR data. The

resultant surface was then compared with the baseline 2-m

DEM interpolated from a TIN. The 5-m resolution represented

a compromise based upon various biophysical and data-specific

factors, including (1) the heterogeneity within and between

marshes (e.g., vegetation species and substrate), (2) the

variations in marsh and upland habitats, (3) the areal extent,

and (4) the postspacing of the LIDAR data. The vertical

accuracy was then tested using both the marsh GCPs collected

for this analysis and the 75 previously collected upland GCPs

initially used to QA the LIDAR data (NOAA CSC, 2008).

As hypothesized, the vertical errors in the 5-m Charleston

County, South Carolina, minimum-bin DEM were less biased

and had a lower RMSEZ in the marsh areas than did the 2-m

TIN-derived DEM (Table 5). However, the minimum bin

technique may undersample areas with steeper slopes or near

tidal streams (i.e., results in negatively biased elevations), as

evidenced by a 12.1-cm decrease in the mean vertical error. In

the upland areas, the resultant RMSEZ and bias statistics

were poorer for the minimum-bin surface than they were for

the TIN-derived DEM. Although the upland RMSEZ of 18.2 cm

would meet FEMA’s base vertical-accuracy specification (i.e.,

RMSEZ # 18.5 cm), the resultant elevation values were

negatively biased by 11.3 cm. Consequently, an 11.3 cm

adjustment (i.e., increase) of the DEM’s values in the upland

areas (e.g., .1 m North American Vertical Datum of 1988)

would both remove the negative bias and decrease the upland

RMSEZ to approximately 14 cm. Such a correction would

result in a fairly accurate DEM, and more importantly, a

nonbiased, bare-earth surface for both the upland and marsh

areas.

Custom Filtering

LIDAR point classification represents a more complex and

resource-intensive avenue to manage the challenges associated

with the paucity of true ground returns in a marsh environ-

ment. Classification, however, has the advantage of being more

discriminating than the previously discussed minimum-

binning technique. There are many different types of classifi-

cation or filtering algorithms (e.g., refer to Zhang and Cui,

2007), but given their inherent complexity and often proprie-

tary nature, specifics about the processes are seldom explicit.

In the following examples, the automated bare-earth extraction

algorithm in LASEdit (Cloud Peak Software LLC, Version

1.15.1, 2007, Sheridan, Wyoming) was employed with an

emphasis placed on high-frequency noise reduction (i.e.,

generalization of the ground surface) and flat-terrain bias.

This translated broadly to a combination of larger search

windows and finer slope thresholds. Defining the exact

parameters or algorithm is not the purpose of this work but

rather assessing the applicability of higher sensitivity, as well

as where improvements can be made and where the process has

deleterious effects on usability.

Figure 10. DEMs generated with the minimum-bin technique and grid cell sizes varying from 2 to 6 m (from left to right) with their associated

elevation profiles.
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Similar to the binning methods, there is a loss of detail

when increasing the sensitivity of the classification algorithm;

more points are removed, thus resulting in lower point density.

The principal advantage of filtering is the potential to discern

critical elevation points and maintain sufficient point density

to represent real topographic features (e.g., tidal channels).

For example, the Palmetto Islands County Park study site was

a subset from the as-received Charleston County, South

Carolina, LIDAR data and was iteratively filtered using

incrementally flatter terrain biases and increased generaliza-

tion to tune the classification. Figure 13 displays three

different iterations of point-classification sensitivity, ranging

from the as-received data (i.e., no additional filtering) to

moderate and ultimately high levels of filtering (filtering

increases from left to right). The Palmetto Islands, South

Carolina, site consisted of a mixture of Spartina alterniflora,

Juncus roemerianus, and Salicornia virginica. Field samples

were collected in the marsh located in the central portion of the

images. Ground-classified points are shown in purple, unclas-

sified points in tan/brown (e.g., trees and other high vegeta-

tion), and low vegetation in green. As the sensitivity of the

filtering increased, greater numbers of potentially erroneous

ground-classified points were reclassified to low vegetation

(i.e., marsh vegetation). The pattern that emerges highlights

the taller Spartina alterniflora adjacent to the tidal creeks and

the Juncus roemerianus that dominates the interior, higher

marsh.

To quantify the postclassification effects on the vertical

accuracy of the LIDAR data, TIN-derived elevations from the

remaining ground-classified points were compared against the

Palmetto Island County Park GCPs. The resultant statistics

showed significant vertical-accuracy improvements in both the

complete sample set (i.e., 47 samples) and the Juncus

roemerianus points (i.e., 36 samples) (Table 6). By contrast,

the Spartina alterniflora points (i.e., 10 samples) demonstrated

only minor variations in the error statistics. However, the as-

received data in the areas dominated by Spartina alterniflora

were quite good. It should also be noted that positive biases,

albeit less, remained in the filtered data sets.

CONCLUSION

Based upon the results of this investigation, the following

conclusions were drawn: (1) LIDAR data errors from coastal

marsh habitats are not the same as those from upland habitats,

which are commonly quoted in accuracy reports; (2) bare-earth

LIDAR points in marsh habitats can have a significant positive

(i.e., aboveground) bias; (3) different vegetative types and

densities affect the error of the LIDAR data; (4) vertical accu-

racy of as-received topographic LIDAR data acquired within the

coastal marsh environment can be improved using custom

DEM-generation techniques; and (5) users should not assume

that the as-received LIDAR data set represents the ‘‘best’’ or

‘‘most appropriate’’ surface for their intended use or application.

Figure 11. Error statistics of marsh GCPs when varying DEM-generation parameters at Navy Base site, South Carolina.
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Two techniques (i.e., minimum bin gridding and point

classification) for generating an improved DEM in coastal

marshes were reviewed; however, by no means, do they

represent the full range of possible solutions. Rather, they

are examples of relatively simple methods that could be

implemented by either end users or data producers to enhance

data quality. The specific algorithm, bin size, bin type (e.g.,

minimum, maximum, or average), and level of effort required

to realize meaningful improvements in the as-received data is

dependent on a number of biophysical and data-specific factors.

Such factors may include marsh vegetation variations (e.g.,

species type, percentage of ground coverage, canopy height,

etc.), the areal extent and topographic complexity of the marsh,

the nominal posting density of the LIDAR data, and ultimately,

the level of vertical accuracy that is required for the

application.

When quantitative QA is warranted or required, the vertical

accuracy of as-received bare-earth marsh elevations should be

tested against GCPs collected inside the marsh, as intuitively

similar land-cover categories (e.g., weeds–crops and scrub–shrub)

have proven to be unreliable predictors of LIDAR performance.

Additionally, coastal marshes are, by definition, composite

environments that often exhibit heterogeneous mixtures of

vegetation species caused by dynamic hydrologic and substrate

conditions. As such, it is advisable to systematically sample at

several targeted locations that include high species diversity. This

is somewhat different from the random sampling strategy

typically applied to accuracy assessments of upland land-cover

categories.

Figure 12. Error statistics of marsh GCPs when varying DEM-generation parameters at Belle Hall site, South Carolina.

Table 5. Comparison of the vertical accuracy statistics for DEMs derived

with the minimum-bin and TIN methods.

Land Cover DEM RMSEZ (cm) Mean (cm)

Standard

Deviation (cm)

Upland TIN 8.8 0.6 8.8

5-m BIN 18.2 211.3 14.3

Marsh TIN 23.3 15.3 17.6

5-m BIN 15.6 3.2 15.3

Figure 13. Increasing filtering levels in a portion of the marsh (central

area of the figures) from as-delivered (low magnitude) to highly filtered

(left to right). The lighter-colored (green) points in the marsh have been

classified as ‘‘low vegetation’’ and removed from the bare-earth (purple)

data set; the yellow points were initially removed.
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